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ON THE SCALING OF PRESSURES FROM NUCLEAR EXPLOSIONS WITH SOME
OBSERVATIONS ON THE VALIDITY OF THE POINT-SOURCE SOLUTION

Prepared by:
M. Lutzky
D. Lehto

ABSTRACT: This report discusses the scaling of pressure-distance curves
for a particular model of a nuclear explosion using an ideal-gas equation
of state. A family of non-dimensional curves is presented which allows
scaling to different ambient conditions for a given energy source. These
curves also make possible scaling close-in to the initial fireball., In
addition, it i1s shown that the theoretical point-source solution for an
ideal gas agrees with the computed solutions, except at close-in distances
and at shock strengths below 50, It 1s shown that neither of these
ideal-gas solutions agrees as well with experiment as does a real-gas
solution.
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ON THE SCALING OF PRESSURES FROM NUCLEAR EXPLOSIORS WITH SOME
OBSERVATIONRS ON THE VALIDITY OF THE POINT-SOURCE SOLUTION

Certain concepts in explosion investigations have been especially valuable
because they make generalizations or extensions possible., Two such con-
cepts are Sachs scaling and the point-source solution. Sachs scaling
permits extension of one set of explosion results for a given situation

to new situations. The point-source explosion model produces an analytic
solution (as opposed to the numerical solutions necessary for solution

of the usual hydrodynamic equations) which makes examination and generaliza-
tions of the behavior of the explogion parameters possible. .
The authors of this report examine these two concepts and, by comparison
with numerical results of the hydrodynamic equations, suggest the limita-
tions that must be placed upon use of scaling and of point-source solu-
tions for blast from nuclear explosions.

Support for this study was provided by the Defense Atomic Support Agency
through NWER Subtask 01.003 (NOL-1681).
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1. INTRODUCTION

Scaling procedures have long been used to extend the range of applica-
bility of both numerical calculations and experimental observations. 1In
particular, "Sachs scaling has been very useful in the treatment of
blast problems, both for high explosives and for nuclear weapons. However,
it is well known that Sachs scaling has limitations in the region close
to the energy source, since the only property of the source taken into
account is the total energy release, This has the consequence that in a
rigorous application of Sachs scaling the parameters describing the energy
source cannot be varied at will. For example, it will be shown that when
an explosion is Sachs scaled to different ambient conditions, it is required
that the parameters describing the source be changed correspondingly. This
is not the usual experimental situation, where it is generally desired to
change the ambient conditions without changing the source.

In this report we shall discuss the scaling of pressure-distance
curves for a particular model of a nuclear explosion using an ideal gas
equation of state. A family of non-dimensional curves will be presented
vhich allows scaling to different ambient conditions for a given energy
source. These curves also make it possible to apply scaling close-in to
the initiel fireball.

In addition, it wlll be shown that the theoretical point source
solution®~® for a shock of infinite strength in an 1deal gas agrees with
our computed solution (which does not assume & point source) over a wide
range of scaled distance. However, neither the theoretical point-source
solution nor our computed ideal-gas solution agrees with experimental data
a8 well as do real-gas solutions.
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2., DISCUSSION

2,1 Nuclear Explosion Model

A nuclear explosion in air is an extremely complex phenomenon,
and many simplifying assumptions are necessary before it 18 possible to
attempt any sort of analytic treatment. One approach is to assume that
the explosion deposits an amount of radiative energy within a sphere of
air in such a way that the temperature and pressure are increased in this
sphere while the density remains at the ambient value. This heated sphere
of air, at uniform temperature and pressure, then expands, creating a
shock which propagates into the atmosphere.

Some further simplifications allow the numerical computation of
the subsequent time evolution by means of a one-dimensional hydrodynamic
computer code. This code considers only pure hydrodynamics, using an \
artificial viscosity to spread the shock over a few spatial zones. Such
a numerical calculation has been carried out for a l-kiloton explosion at
sea level, using a real-gas equation of state for air.® The computed
results for the airshock agree to within 5 per cent with experimental
results,f for nuclear explosions, which shows that the model is useful.
for sea-level phenomena,

At this stage, it is natural to ask whether this type of calcula-
tion may be scaled to different ambient pressures. It turns out that a
useful method of scaling does exist if the air is treated as an ideal gas.
The method which we describe in the next section is a generalization of
Sachs scaling for an ideal gas and allows scaling close-in to the fireball.

2.2 Scaling of Nuclear Explosions

Consider an ideal gas in which an amount of internel energy E is
uniformly distributed throughout a sphere of radius a, The density and
pressure in the ambient atmosphere (outside the energized sphere) are taken
to be g and py, respectively. The density within the sphere is taken to
be py, and the particle velocity is initially zero everywhere. The origin
of coordinates is taken at the center of the sphere, and r measures the
radial distance from this origin. Then the following quantities are suf-
ficient to describe the phenomena: a, E, Py, @, 'y t, ¥, where t = time,
and ¥ = ratio of specific heats for the ideal gas. We may form the set
of dimensionless quantities:

A= r/(E/po)"b
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¢ = a/(E/ne )1'6

(Note that, because of the ideal gas assumption, we have y = . 1,
vwhere ¢ ™ internal energy per unit mass for ambient atmosphere.) It is
not difficult to show that any other dimensionless parameters which may
be formed from the available quantities a, E, Py, iy, ry, t, Y must be
functions of ), 7, {, and Y. We may thus take this set of dimensionless
parameters ag a fundamental set for the description of the solution to
our problem. )\ and v are the dimensionlesas independent variables, while
¢ and Y are dimensionless constants.

Any dependent variable which describes some aspect of the evolu-
tion of the physical system can be non-dimensiocnalized and expressed in
terms of our fundamental set. For instance, if pg 1s the pressure at the
shock front, we may put

P
H=-§-=F1 (xs 75 €5 ¥) - (2)

~where F; 1s an unknown function which can only be obtained by solving the
partial differential equations describing the problem. Similarly, the
shock path equation must be representable in the form

Fz ()\: Ty G» Y) =0 : (3)

We may obtain a dimensionless pressure-distance curve (pressure at the
shock front as a function of shock position) by eliminating Tt between
(2) and (3). The result is an expression of the form

n=F, (A, ¢, V) (1)

If the function F, (X, {, Y) could be somehow determined, a set of
dimensionless pressure-distance curves could be generated, each curve
being a plot of equation (4) for different values of { and y. Each
curve could then be used to predict shock pressure as a function of
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shock radius, subject to certain restrictions., That is, a given curve, .
labeled by [ = (o and Y = Yo, would not yield pressure versus distance

for any arbitrary combination of v, initial radius, ambient pressure, and

explosion energy. It could be used only for velues of a, E, Dy, R, €

vwhich satisfy 1337;'0_5’7’ = ¢, and f: = t17%.

This gives rise to the situation mentioned in the introduction,
where 1t wes stated that the scaling process requires that the parameters
describing the source be changed when the phenomenon is acaled to different
ambient conditions. Thus, suppose that we have available only a single
Il versus A curve, obtained from equation (4) by 1etting Y = 1.4 and letting

¢ have some specific value, say (5. Then {5 = (——) a, and if we wish
to scale to a new ambient pressure, say pb, then we can use the same curve
only if we also change E and/or & in such a way that ( ) a’ is still
equal to (5. This restriction can be avoided if a set of curves is avail-
able for which the associated values of { cover the desired range.

2,3 Dimensionless Pressure-Distance Curves

Such a set of curves has been generated using a one-dimensional
hydrodynamic code’ on an IBM-7090. This code solves the partial 4if-
ferential equations of gas dynamics using finite difference methods, and
has been applied to the problem described above for various values of
initial fireball radius and ambient pressure. From the complete solutions
thus obtained, non-dimensional curves for the shock pressure versus shock
radius have been constructed. These curves are plotted in Figures 1 and
2, which show the high pressure region (n> lOO), and low pressure region
(u < 100), respectively (see Appendix A). In Figure 1, the shock strength,
I, is plotted against )\, while in Figure 2, the overpressure, [ - 1 is8
plotted against \; this distinction is made for reasons of clarity in
plotting the low pressure region. The amblent atmosphere was assumed to
be an ideal gas with ¥ = 1.4, so that the curves are plots of equation (%),
for various values of {, and with y = 1.4, (In particular, the curve for
{ = 0.0123 was obtained from a calculation of a l-kt nuclear explosion at
sea level. For this case, the initial radius of the firebsll was chosen
to be a = 4,251 meters.)

It can be seen from Figure 1 that each curve joins onto a single
main curve at appraximately two fireball radii. A result of this fact is -
that, as far as distances greater than two fireball radii are concerned,
only a single curve is necessary to scale any given pressure-distance .
calculation to some other ambient pressure. In this range, the curve is -
independent of the dimensionless variable* [, and the scaling used is what

¥ Actually, this is not strictly true, because of the fact that the second
and subsequent shocks Join the main shock at times which depend on the
initial fireball radius. However, these appear only as minor perturba-
tions to the main pressure-~distance curve.

4
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is ordinarily known as Sachs scaling. On the other hand, for scaling the
close-in pressure-distance curve to otler ambient pressures, it is first
necessary to locate the proper dimensionless curve by calculating the
appropriate value of (. This seems reasonable in view of the fact that
at small distances the phenomena of energy transfer to the ambient air
and the subsequent shock formation are certainly influenced by the initial
firevall size. Therefore, we would not expect the scaling to be inde-~
pendent of a in this region.

It is evident from Figure 1 that the main curve is the envelope
of the family of different [ curves. (The complete main curve can be
constructed by including the extrapolated portion, shown on the figure
as a deshed line.) This main curve can also be considered to be a limit-
ing curve which is approached by the { curve as [ - O. Since { - O may
be achieved by letting a - O, while keeping E and p, constant, it is then
clear that the main curve can be regarded as the pressure-distance curve
for & point source of energy E in an atmosphere of ambient pressure p,.

This interpretation of the main curve can be verified as follows,
It can be shown from Figure 1 that, for I > 100, the main curve is repre-
sented very well by the analytical formula

I = 0.158 A~3 | (5)

The problem of & point source explosion for a shock of infinite
strength has been solved analytically by similarity methods?*3** For the
range of values in Figure 1, the shock strengths are quite high (10° < 1l
< 10F), so that it seems reasonable to check equation (5) against these
analytical results. The similarity theory yields for the pressure-distance
curve the expression*

8
PrmnIOs ¥ (6)

where o i8 2 dimensionless quantity which depends only on Y. This
quantity has been evaluated by Sedov® for ¥y = 1.4, and the result is
o = 0.851. Thus equation (6) takes the form

p = 0.1567 E/r® (7

If equation (5) is converted to dimensioned variables, Do cancels out and
the expression becomes




NOLTR 65-Th4

p = 0.158 E/r® | (8)

Comparing (7) and (8), we see that the correspondence between the computed -
and analytic result is excellent. Thus, for Il > 100, the main curve is’
identical with the point source, infinite shock strength, pressure-distance

curve.

For lower shock strengths, we can expect that the main curve will
deviate from the analytic pressure-distance curve given by (7). This is
because (7) is derived under the assumption of infinite shock strength,

80 that the similarity solution is no longer correct when the shock pres- -
sure becomes sufficiently small. In fact, referring to Figure 2, we see
that the two curves begin to deviate at II = 50.

2.4 Comparison with Real-Gas Calculations and Experiment

In the previous sections, we have discussed pressure scaling far
a particular model of a nuclear explosion. In this model, an ideal-gas
equation of state was used for air, with y = 1.4. Since it is known®
that computations of this model with a real-gas equation of state agree
closely (at sea level) with experiment, it is of interest to compare the
ideal-gas result with the real-gas result. Figure 3 presents a comparison
of these two treatments for the particular case of & l-kiloton explosion
at sea-level conditions. The ideal-gas result, for v = 1.4, is obtained
from Figures 1 and 2, using { = 0.0123. (As we have seen, this curve
coincides with the infinite-shock-strength, point-source solution for an
ideal gas at distances greater than two fireball radii, and at shock strerngths
greater than 50.) An ideal-gas result has also been computed for vy = l.2,
which is a rough limit for v at high pressures. The comparison then shows
that the real-gas calculation sgrees with experiment much better than does
either of the ideal-gas calculations. In fact, it is clear that the ideal-
gas calculation will not correspond with experiment for any value of v,
8lince the slopes of the ideal-gas curves differ considerably from the
experimental and real-gas slopes.

It would therefore be logical to attempt to devise a scaling
technique (analogous to the one previously described) for the same model
of a nuclear explosion, but with the real-ges equation of state. Unfor--
tunately, more sophisticated equations of state introduce new dimensional
quantities which complicate the analysis considerably.
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3. CONCLUDING REMARKS

In this report, we have reviewed the use of dimensional analysis to
scale pressure-distance curves for a particular model of a nuclear explo-
sion. The following conclusions may be stated:

3.1 It is possible to scale pressure-distance curves for the ideal
gas by means of a family of non-dimensional Il versus A curves, each
curve corresponding to a particular value of (.

3.2 For distances larger than twice the fireball radius all of the
{ curves coincide, so that in this range only one non-dimensional curve
is necessary.,

3.3 Within two fireball radii one must first find the proper dimension-
less curve to use by determining the relevant value* of the parameter (.

3.4 The envelope of the family of (-curves coincides with the point-
source curve except for distances less than two fireball radii and for
shock strengths less than 50.

3.5 All of the calculations described above apply for an ideal gas.
A computer calculation made for a l-kt explosion at sea level conditioms,
using & real-gas equation of state, gives better agreement with experi-
ment than either the point-source solution or the {-curve solution.

* Any reasonable physical sitwetion will usually have a value of ( between
zero and 0.05. Even conventlional explosives have [ values in this
range: for pentolite at seu level, { = 0.0lk. Tne particular explo-
sion model discussed in this report, however, does not apply to high
explosives, e.g., see reference 8.
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APPENDIX A
Initial Pressure Outside the Fireball

Figure A-1 shows some of the computed data points for the case
{ = 0.0123, There is a smell gap (labeled "corrected region") between
the initial periphery of the fireball and the first meaningful shockfront
data because of the finite zone size used in the calculations. This gap
can be made smaller by using smaller zones in the problem, but this mekes
the computer running time excessively long. Instead, we derive theo-
retically the initial shockfront pressure and extend the curve through
the computed date to this derived initial point.

The initial stages of airshock formation at the periphery of the
fireball should be very much like those in a linear shock tube, because
the interaction region is initially thin compared to the fireball radius.
For a linear shock tube of reservoir conditions

P, = reservoir (fireball) pressure

¢, = reservoir sound speed
Yy, = reservoir specific heat ratio
. . and similarly defined ambient conditions Py, ¢y, Yo, & shockfront with

pressure P will form. These quantities are related by the equation¥*

Yy -1
-y | +
o IR JCAER N C R EYS IR L (RS o SRR (S

The nuclear fireball situation differs from the ususl shock tube at this
point in that the density is equal on both sides of the interface rather
than the temperature. For the fireball model being considered here,

R = A
% = (En.)%
¢ P1 .

Equation (A-1) now becomes

* W. Bleakney and A. H. Taub, 'Interaction of Shock Waves," Rev. Mod.
. Phys. _2_]_.., Oct 19'49, p. 590.
A=}




NOLTR 65-Th

N ]
EE) =1- (?m)* G-1[1(+6 ?-o-)]* (A-2)

For the high-pressure region where P/P, > 1,

(-‘i-)+ 1-(P*

P, T (A-3)

the solution of which is P/P = 0,464, Thus, for large initial shock
strengths the initial pressure in the airshock is 0,464 times the initial
pressure in the fireball. This is the point to which the calculated data
are extended in Figure A-l to £ill in the "corrected region.”
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